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1 Introduction

Since a few years, there is a considerable interest about some models of strongly correlated

electrons, in particular those of the families of the t–J model and of the Hubbard model.

The reason is that they exhibit some very interesting physical properties related with high

Tc superconductivity. Among these models, some have the property of supersymmetry,

or quantum supersymmetry. This is the case for some generalisations of the t–J model.

It is also the case for some variants of the Hubbard models in which a pair hopping term

is included ([1, 2, 3] and [4] for quantum supersymmetry).

The aim of this paper is to present the construction of two variants of the super-

symmetric Hubbard model with pair hoppings, to describe the algebra that ensures their

integrability and to solve the reflection equations which lead to integrable boundary terms.
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From the expression of the series of Casimir operators Cp of Uq(sl(2|1)), we derive

quantum spin chain hamiltonians H with built-in Uq(sl(2|1)) invariance:

H =

L−1∑
i=1

1⊗ · · · ⊗ (ρ⊗ ρ)∆(Pol{Cp})︸ ︷︷ ︸
sites i,i+1

⊗ · · · ⊗ 1 . (1.1)

An ingredient of the construction is the knowledge of a series of Casimir operators of

the quantum algebra. We will also see that the knowledge of scasimirs (given in section 2)

leads to some exactly solvable hamiltonians.

Another ingredient of the construction is the four dimensional one parameter typical

representation ρ of Uq(sl(2|1)), so that the hamiltonian describes a four states per site

spin chain with two parameters (the parameter of the representation together with the

deformation parameter q).

The integrability of the closed chain is based on the algebra

(bi + q)
(
bi − qλ

2
) (
bi − q

−1λ−2
)

= 0 , (1.2)

bibi±1bi = bi±1bibi±1 , (1.3)

bibj = bjbi for |i− j| ≥ 2 , (1.4)

(bi − x)b
−1
i±1(bi − x)− b

−1
i (bi±1 − x)b

−1
i = (bi±1 − x)b

−1
i (bi±1 − x)− b

−1
i±1(bi − x)b

−1
i±1 .(1.5)

This algebra was proved in [5] to be sufficient to construct a solution Ř(u) of the Yang–

Baxter algebra (see below (4.4)). Moreover, the Birman–Wenzl–Murakami algebra [6, 7]

is a quotient of this algebra. Our realisation of the algebra (1.2–1.5) actually does not

satisfy the supplementary relations of the BWM algebra. The operators bi enters in the

expression of the two site hamiltonian as

Hi,i+1 = bi − b
−1
i . (1.6)

A remarkable fact is that, using the distinguished and fermionic bases of Uq(sl(2|1)),

we obtain two different hamiltonians, the difference being in the boundary terms. The

same phenomenon was described in [8] with three state per site spin chains (deformed

supersymmetric t–J model). These hamiltonians are actually equivalent on open chains,

but this equivalence, which comes from a Reshetikhin twist, is non trivial since it is non

local on the chain.

One of the hamiltonians (constructed with the distinguished basis) was known to be

exactly solvable [9, 4]. It was obtained in [4], starting from the expression of the spectral

parameter R-matrix of Uq(sl(2|1)).

The reflection equations associated with the solution Ř(u) of the Yang–Baxter algebra

are solved for diagonal K matrices. Two families of one parameter solutions are found for

each equation, leading to four possible boundary terms for exactly solvable open chain

hamiltonians. This number of solutions is the same as found in [10] in the case of the

supersymmetric t–J model. It is then shown that a special choice of these boundary
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terms is exactly the difference of the two hamiltonians built from the distinguished and

the fermionic bases.

In the Appendix, the expressions of the scasimir operators of the (non quantized)

sl(2|1) superalgebra are given.

This work was already completed when the paper [11] appeared. In this paper, the

hamiltonian (5.6) corresponding to the distinguished basis is studied. One of the solutions

(i.e. 6.5) for the reflection equations is given and the corresponding integrable boundary

terms are computed. The Bethe ansatz equations are also written. Analogous results

were also obtained in [12] for the same model with isotropy. Similar studies also exist for

eight-state Uq(sl(3|1))-invariant models [13, 14].

2 The quantum algebra Uq(sl(2|1))

2.1 Definitions

The superalgebra Uq(sl(2|1)) in the distinguished basis is the associative superalgebra

over C with generators k±1
i , ei, fi, (i = 1, 2) and relations

k1k2 = k2k1 ,

kiejk
−1
i = qajiej ,

e1f1 − f1e1 =
k1 − k

−1
1

q − q−1
,

[e1, f2] = 0 ,

kifjk
−1
i = q−ajifj ,

e2f2 + f2e2 =
k2 − k

−1
2

q − q−1
,

[e2, f1] = 0 ,

e2
2 = f 2

2 = 0 ,

e2
1e2 − (q + q−1)e1e2e1 + e2e

2
1 = 0 ,

f 2
1 f2 − (q + q−1)f1f2f1 + f2f

2
1 = 0 . (2.1)

The matrix (aij) is the distinguished Cartan matrix of sl(2|1), i.e.

(aij) =

(
2 −1

−1 0

)
(2.2)

The Z2-grading in Uq(sl(2|1)) is uniquely defined by the requirement that the only

odd generators are e2 and f2, i.e.

deg (ki) = deg (k−1
i ) = 0 ,

deg (e1) = deg(f1) = 0 ,

deg (e2) = deg(f2) = 1 . (2.3)

We define a Hopf algebra structure on Uq(sl(2|1)) by

∆(ki) = ki ⊗ ki ,

∆(ei) = ei ⊗ 1 + ki ⊗ ei ,

∆(fi) = fi ⊗ k
−1
i + 1⊗ fi , (2.4)
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2.2 Centre and scasimirs

In the enveloping algebra Uq(sl(2|1)), we define for p ∈ Z the elements

Q(+)
p = k2p−1

1 k4p−2
2

{
[h1 + h2 + 1][h2]− f1e1 − f2e2[h1 + h2 + 1]− f3e3[h2 − 1]

+ q−1f3e2e1k2 + qf1f2e3k
−1
2 +

(
1 + q2−4p

)
f2f3e3e2

}
, (2.5)

and

Q(−)
p = k2p−1

1 k4p−2
2 q−2p

{
qf2e2[h1 + h2] + qf3e3[h2 − 2]

− q−1f3e2e1k2 − q
3f1f2e3k

−1
2 −

(
1 + q2

)
f2f3e3e2

}
, (2.6)

where

e3 = e1 e2 − q
−1e2 e1 and f3 = f2 f1 − q f1 f2 . (2.7)

The operators Q(±) satisfy the following set of relations

Q(+)
p1
Q(−)
p2

= Q(−)
p1
Q(+)
p2

= 0 ∀ p1, p2 ∈ Z , (2.8)

Q(+)
p1
Q(+)
p2

= Q(+)
p3
Q(+)
p4

if p1 + p2 = p3 + p4 , (2.9)

Q(−)
p1
Q(−)
p2

= Q(−)
p3
Q(−)
p4

if p1 + p2 = p3 + p4 . (2.10)

In the enveloping algebra Uq(sl(2|1)), there are two abelian subalgebras A(+) and A(−),

generated respectively by the operators Q(+) and Q(−). They are such that

∀x+ ∈ A(+), ∀x− ∈ A(−), x+x− = x−x+ = 0 . (2.11)

The elements Q(±) allow us to build generators of the centre of Uq(sl(2|1)), and also

a set of scasimirs: if we define, for p ∈ Z

Cp = Q(+)
p +Q(−)

p , (2.12)

Sp = Q(+)
p −Q

(−)
p , (2.13)

then

• 1 and the Cp, for p ∈ Z, generate the centre of Uq(sl(2|1)), (for q not a root of unity):

xCp − Cpx = 0 ∀x ∈ Uq(sl(2|1)) . (2.14)

(See [8, 15], and [16] for the non quantized case).

• The Sp commute with the bosonic elements of Uq(sl(2|1)) and anticommute with

the fermionic ones (although they are themselves bosonic)

Spx− (−1)deg(x)xSp = 0 (∀x ∈ Uq(sl(2|1)) with homogeneous degree) . (2.15)
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Furthermore, the Cp, Sp obey the set of relations

Cp1Cp2 = Cp3Cp4 if p1 + p2 = p3 + p4 , (2.16)

Cp1Cp2 = Sp3Sp4 if p1 + p2 = p3 + p4 , (2.17)

Cp1Sp2 = Sp3Cp4 if p1 + p2 = p3 + p4 , (2.18)

which is equivalent to the set (2.8, 2.9, 2.10). Relation (2.16) was given in [16] for the

non quantized case and in [8] in the quantized case.

In particular, on representations on which Cp are different from 0, the quotient SpCp
plays the role of (−1)F , i.e.:(

Sp
Cp

)2

= 1 , (2.19)

Sp
Cp
x− (−1)deg(x)x

Sp
Cp

= 0 (∀x ∈ Uq(sl(2|1)) with homogeneous degree) . (2.20)

Most hamiltonians in the following will be constructed using (ρ⊗ ρ)∆(Cp), with

Cp = k2p−1
1 k4p−2

2

{
[h1 + h2 + 1][h2]− f1e1 + f2e2([h1 + h2]q

1−2p − [h1 + h2 + 1])

+ f3e3([h2 − 2]q1−2p − [h2 − 1]) + (q − q−1)q−1−p[p]f3e2e1k2

+ (q − q−1)q2−pf1f2e3k
−1
2 [p− 1] +

+ (q − q−1)2q1−2p[p][p− 1]f2f3e3e2

}
. (2.21)

2.3 Four dimensional representation

We use the one-parameter four-dimensional representation, acting on the vector space V

of dimension 4 and defined (in the distinguished basis) by

ρ(e1) = −ωqE23

ρ(e2) = (λ− λ−1)E12 + (qλ− q−1λ−1)E34

ρ(f1) = −q−1E32

ρ(f2) = E21 + E43

ρ(k1) = λ−1
(
E11 + E22 + q−1E33 + q−1E44

)
ρ(k2) = ωλ−2

(
E11 + q−1E22 + q−1E33 + q−2E44

)
, (2.22)

where ω = ±1 is a discrete parameter that allows two different (inequivalent) representa-

tions for each value of the continuous parameter λ ≡ qµ [15]. The discrete parameter ω

is a remnant of the quantisation of the value of k1 on the highest weight vector in finite

dimension.

The Eij are the standard elementary matrices of End(V ) given by

(Eij)kl = δikδjl . (2.23)

5



J
H
E
P
1
2
(
1
9
9
7
)
0
0
6

The operators are represented by ordinary matrices, with complex (commuting) elements.

We do not consider supermatrices. The traces are not supertraces. Tensor products of

representations are non-graded tensor products. We indeed use, as in [8], the non-graded

coproduct defined from the usual graded one as (in Sweedler’s notation)

∆n.g.(x) =
∑

x(1)g
deg(x(2)) ⊗ x(2) where ∆(x) =

∑
x(1) ⊗ x(2) , (2.24)

g being the diagonal element in End(V ) defined by g =
∑dimV

j=1 (−1)deg(j)Ejj with deg(1) =

deg(4) = 0 and deg(2) = deg(3) = 1. This is nothing but a Jordan–Wigner transforma-

tion. Practically, on tensor products of representations, this amounts to the use of the

graded coproduct ∆, the evaluation of the representations ρ1 ⊗ ρ2 and then application

of the transformation

Eij ⊗Ekl −→ (−1)deg(j)(deg(k)+deg(l))Eij ⊗Ekl . (2.25)

In the following, this will be implicitly included in the construction. This use of ordinary

matrices and non graded coproduct is actually equivalent to the standard procedure, and

leads to the same conclusions. It is however sometimes simpler in actual computations.

The transformation from ∆ to the non-graded ∆n.g. was used by Majid to bosonize

super Hopf algebras [17]. It is a simple case of transmutation. A transformation was

also defined in [18] and applied to the R-matrix, which allowed to consider non-graded

Yang–Baxter equations.

3 Braid group representation

Explicit computation shows that

(ρ⊗ ρ)∆(Cp) = −q−1λ8p−4
(
[2µ][2µ+ 1]O0 + q2p−1[2µ][2µ+ 2]O1

+q4p−2[2µ+ 1][2µ+ 2]O2

)
, (3.1)

where the expression of the operators Oa is given later in equation (4.3).

The operators Oa satisfy the relations

OaOb = δa,bOa

O0 +O1 +O2 = Id . (3.2)

The operators O0, O1, O2 are actually projectors on the representations of dimension

4, 8 and 4, respectively, that enter in the decomposition of the tensor product ρ⊗ρ (using

∆).

Inverting (3.1) allows us to express these projectors directly in terms of evaluations

on the tensor product ρ⊗ ρ of some Casimir operators Cp:

O0 =
q4λ−8p−4

[2µ][2µ+ 1](q4 − 1)(q2 − 1)
(ρ⊗ ρ)∆

(
−q3λ8Cp + (q + q−1)Cp+1 − q

−3λ−8Cp+2

)
,
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O1 =
q−2p+4λ−8p−4

[2µ][2µ+ 2](q4 − q2)(q2 − 1)
(ρ⊗ ρ)×

×∆
(
q2λ8Cp − (q2 + q−2)Cp+1 + q−2λ−8Cp+2

)
,

O2 =
q−4p+4λ−8p−4

[2µ+ 1][2µ+ 2](q4 − q2)(q4 − 1)
(ρ⊗ ρ)×

×∆
(
−qλ8Cp + (q + q−1)Cp+1 − q

−1λ−8Cp+2

)
, (3.3)

where, again, λ = qµ.

As a consequence of (3.2), the algebra generated by all the Uq(sl(2|1)) invariant op-

erators (ρ ⊗ ρ)∆(Cp) is Vect(O0,O1,O2) = Vect(Id,O0,O2) ⊂ End(V ⊗ V ). Within this

algebra, we look for operators b satisfying the braid group relations

bibi±1bi = bi±1bibi±1 , (3.4)

bibj = bjbi for |i− j| ≥ 2 , (3.5)

where

bi ≡ bi,i+1 = 1⊗ · · · ⊗ b⊗ · · · ⊗ 1 , (3.6)

in which b occupies positions i, i+ 1.

We find two non trivial solutions to these equations, given by

b = −qId + qλ
[2µ]

[µ]
O0 + λ−1 [2µ+ 2]

[µ+ 1]
O2 , (3.7)

the other one being its inverse b−1.

b−1 = −q−1Id + q−1λ−1 [2µ]

[µ]
O0 + λ

[2µ+ 2]

[µ+ 1]
O2 . (3.8)

These are the only solutions for generic λ = qµ. For particular values of λ, i.e. λ = ±q−1/2

for instance, there are other solutions to the braid relations, which can lead to Temperley–

Lieb algebra [19].

We define x = (λ − λ−1)(qλ − q−1λ−1) and y = ([µ][µ + 1])1/2 = x1/2/(q − q−1),

including the freedom for a sign in y.

The explicit expressions for b and b−1 are

b = qλ2E11 ⊗ E11 + (qλ2 − q)E11 ⊗E22 + (qλ2 − q)E11 ⊗ E33 + xE11 ⊗ E44

+ qλ(E12 ⊗ E21 + E21 ⊗ E12) + q−1/2x1/2(E12 ⊗E43 + E21 ⊗E34)

+ qλω(E13 ⊗E31 + E31 ⊗ E13)− q
1/2x1/2ω(E13 ⊗ E42 + E31 ⊗ E24)

+ qω(E14 ⊗E41 + E41 ⊗ E14)− qE22 ⊗E22 + (q−1 − q)E22 ⊗ E33

+ (q−1λ−2 − q)E22 ⊗ E44 − ω(E23 ⊗ E32 + E32 ⊗E23)

+λ−1ω(E24 ⊗ E42 + E42 ⊗E24)− qE33 ⊗ E33 + (q−1λ−2 − q)E33 ⊗E44

+λ−1(E34 ⊗E43 + E43 ⊗E34) + q−1λ−2E44 ⊗E44 , (3.9)
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b−1 = q−1λ−2E11 ⊗ E11 + q−1λ−1(E12 ⊗E21 + E21 ⊗ E12)

+ q−1λ−1ω(E13 ⊗ E31 + E31 ⊗ E13) + q−1ω(E14 ⊗ E41 + E41 ⊗ E14)

+ (q−1λ−2 − q−1)E22 ⊗E11 − q
−1E22 ⊗ E22 − ω(E23 ⊗ E32 + E32 ⊗E23)

−q−1/2x1/2ω(E24 ⊗ E31 + E42 ⊗E13) + λω(E24 ⊗E42 + E42 ⊗ E24)

+ (q−1λ−2 − q−1)E33 ⊗E11 + (q − q−1)E33 ⊗ E22 − q
−1E33 ⊗E33

+ q1/2x1/2(E34 ⊗E21 + E43 ⊗E12) + λ(E34 ⊗ E43 + E43 ⊗ E34)

+ xE44 ⊗ E11 + (qλ2 − q−1)E44 ⊗E22 + (qλ2 − q−1)E44 ⊗ E33

+ qλ2E44 ⊗E44 . (3.10)

4 A cubic algebra, baxterization and exact solvability

These solutions satisfy the cubic equations

(bi + q)
(
bi − qλ

2
) (
bi − q

−1λ−2
)

= 0 , (4.1)(
b−1
i + q−1

) (
b−1
i − qλ

2
) (
b−1
i − q

−1λ−2
)

= 0 . (4.2)

The explicit expressions for the projectors Oa can be obtained from (3.9, 3.10) by

inverting (3.7, 3.8), i.e.,

O0 =
[µ]

[2µ][2µ+ 1]

(
[µ+ 1]Id +

1

q − q−1

(
λb− λ−1b−1

))
,

O1 =
[µ][µ+ 1]

[2µ][2µ+ 2]

((
qλ2 + q−1λ−2

)
Id− b− b−1

)
,

O2 =
[µ+ 1]

[2µ+ 1][2µ+ 2]

(
[µ]Id +

1

q − q−1

(
−q−1λ−1b+ qλb−1

))
. (4.3)

We can use the cubic equations (4.2) in a Baxterisation procedure [20] to get solution

of the Yang–Baxter algebra

Ři,i+1(u)Ři+1,i+2(u+ v)Ři,i+1(v) = Ři+1,i+2(v)Ři,i+1(u+ v)Ři+1,i+2(u) ,

Ři,i+1(u)Řj,j+1(v) = Řj,j+1(v)Ři,i+1(u) for |i− j| ≥ 2 . (4.4)

The matrix Ř is related to the matrix R by Ř = PR, the operator P being the permu-

tation map P : x⊗ y 7→ y ⊗ x.

In the simplest case where bi satisfies a quadratic relation (Hecke case), it is possible

to find a linear combination of b and b−1 that is solution of the Yang–Baxter algebra

(Baxterisation).

We look here for solutions of the Yang–Baxter algebra (4.4) with Ř(u) in the linear

span of Id, b, b−1 with coefficients depending on u.

We find the solution

Ři,i+1(u) = 1 +
1

x

(
(eu − 1)bi + (e−u − 1)b−1

i )
)
, (4.5)

8
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relying on the fact that b obeys the supplementary relation

0 = bib
−1
i±1bi − bi±1b

−1
i bi±1 − b

−1
i bi±1b

−1
i + b−1

i±1bib
−1
i±1

−x(bib
−1
i±1 − b

−1
i bi±1 − bi±1b

−1
i + b−1

i±1bi)

−x(q−1(bi − bi±1)− q(b
−1
i − b

−1
i±1)) (4.6)

or equivalently

(bi − x)b
−1
i±1(bi − x)− b

−1
i (bi±1 − x)b

−1
i =

= (bi±1 − x)b
−1
i (bi±1 − x)− b

−1
i±1(bi − x)b

−1
i±1 . (4.7)

The algebra satisfied by the operators bi is then given by (1.2-1.5). It is sufficient to

define an exactly solvable periodic spin chain. This algebra was already used in [5] to

obtain solutions of the Yang–Baxter algebra (4.4).

We notice that we do not have a full BWM algebra: in the algebra generated by bi,

b−1
i , the operators ei such that

e2
i = αei (4.8)

satisfy neither

eiei±1ei = α′ei (4.9)

nor

eibi±1ei = α′′ei . (4.10)

The relations (1.2–1.5) are nevertheless enough to ensure that the Ř-matrix (4.5)

satisfies the Yang–Baxter algebra.

The Ř-matrix with spectral parameter u satisfies the inversion relation:

Ř(u)Ř(−u) = ζ(u) , (4.11)

with

ζ(u) = e−2u(eu − λ−2)(eu − λ2)(eu − q2λ−2)(eu − q−2λ2)/x2 . (4.12)

It has PT symmetry:

R21(u) ≡ PR12(u)P = R12(u)
t1t2 . (4.13)

It satisfies also the crossing unitarity property [21, 22]:

R12(u)
t1M1R21(−u− 2ρ)t1M−1

1 = ξ(u+ ρ) , (4.14)

with

ρ = ln q , M =


1

−1

−q2

q2

 (4.15)

and

ξ(u) = −(q−1eu − 1)(1− qe−u)(qeu − 1)(1− q−1e−u)/x2 . (4.16)
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We define the row-to-row transfer matrix on a closed chain as Tr0T (u), where T (u)

is the monodromy matrix given by

T (u) = R0L(u)R0 L−1(u) · · ·R01(u) . (4.17)

The Yang–Baxter algebra satisfied by R ensures that transfer matrices with different

spectral parameters commute, i.e.

[Tr0 T (u), T r0 T (v)] = 0 ∀u, v . (4.18)

From the R-matrix one can extract a spin chain hamiltonian with nearest neighbour

interaction

Hper = x
d

du

∣∣∣∣
u=0

T (u) =
L−1∑
i=1

Hi i+1 +HL 1 , (4.19)

with

Hi,i+1 = x
d

du

∣∣∣∣
u=0

Ři,i+1(u) = bi − b
−1
i . (4.20)

With periodic boundary conditions, this hamiltonian also commutes with all the transfer

matrices, which is the requirement for its exact solvability. The hamiltonian with ordi-

nary periodic boundary conditions is however not Uq(sl(2|1))-invariant. A method was

developed in [23] to construct a periodic hamiltonian which is still Uq(sl(2|1))-invariant,

by adding a “HL1”-type term which is not completely local. A simpler solution is also

presented in [24].

5 Two site quantum chain hamiltonian

To obtain a model of interacting electrons, we will use, as in [4] the following interpretation

of the states of the representation in terms of fermionic states:

|1〉 = |↑↓〉 = c†↓c
†
↑ |∅〉 |2〉 = |↓〉 = c†↓ |∅〉 |3〉 = |↑〉 = c†↑ |∅〉 |4〉 = |∅〉 . (5.1)

We will also use

n↑ = c†↑c↑ = E11 + E33 , (5.2)

n↓ = c†↓c↓ = E11 + E22 , (5.3)

n = n↑ + n↓ = 2E11 + E22 + E33 . (5.4)

(5.5)

The expression of the spin chain hamiltonian obtained in this case is given by

Hdist = Hhop +Hdist
diag , (5.6)
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where

Hhop =
(
c†↑i+1c

†
↓i+1c↓ic↑i + c†↑ic

†
↓ic↓i+1c↑i+1

)
+
(
c†↑i+1c↑i + c†↑ic↑i+1

){
− [µ] + n↓i

(
[µ] + q−1/2y

)
+ n↓i+1

(
[µ]− q1/2y

)
+n↓in↓i+1

(
−[µ] + [µ+ 1] + (q1/2 − q−1/2)y

)}
+ω

(
c†↓i+1c↓i + c†↓ic↓i+1

){
− [µ] + n↑i

(
[µ]− q1/2y

)
+ n↑i+1

(
[µ] + q−1/2y

)
+n↑in↑i+1

(
−[µ] + [µ+ 1] + (q1/2 − q−1/2)y

)}
(5.7)

and

Hdist
diag = n↑in↓i + n↑i+1n↓i+1 − [2µ+ 1]

+qµ+1[µ](n↑i + n↓i) + q−µ−1[µ](n↑i+1 + n↓i+1) , (5.8)

where µ is related to the parameter of the representation λ by λ = qµ. By construction,

the creation and annihilation operators on different sites commute. A Jordan–Wigner

transformation can restore the standard anticommutation property.

This exactly solvable hamiltonian with two parameters λ = qµ and q was already

considered in [9, 4]. In [4], it was obtained as the derivative of the spectral parameter

Ř-matrix of the four dimensional representation of Uq(sl(sl2|1)). The eigenstates of the

periodic model are found in [25] using the algebraic Bethe ansatz.

6 Reflection equations and open chain hamiltonian

6.1 Reflection equations

We can also get an exactly solvable and Uq(sl(2|1))-invariant open chain hamiltonian by

solving the reflection equations [26, 27, 28, 22, 29]

R12(u− v)K
−
1 (u)R21(u+ v)K−2 (v) = K−2 (v)R12(u+ v)K−1 (u)R21(u− v) (6.1)

and

R12(−u+ v)K+
1 (u)t1M−1

1 R21(−u− v − 2ρ)M1K
+
2 (v)t2 =

K+
2 (v)t2M1R12(−u − v − 2ρ)M−1

1 K
+
1 (u)t1R21(−u+ v) . (6.2)

The simplest solution for these equations is [29]

K−(u) = Id and K+(u) = M . (6.3)

This is always a solution when the spectral parameter R-matrix is obtained via self-

Baxterisation [20], i.e. when the Ř-matrix belongs to the algebra generated by bi, since

in this case Ř-matrices with different spectral parameters commute:[
Ř(u), Ř(v)

]
= 0 ∀u, v ∈ C . (6.4)
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The matrix M may in this case be interpreted as a Markov trace, as in [30].

More generally, there are two diagonal one parameter solutions for K−(u) (up to an

overall function of u), given by

K−a (u) =
1

(1 + C)(1 + q2C)
×

×


(e−u + C)(e−u + q2C)

(eu + C)(e−u + q2C)

(eu + C)(e−u + q2C)

(eu + C)(eu + q2C)


(6.5)

and

K−b (u) =
1

1 + C


e−u + C

e−u + C

eu + C

eu + C

 . (6.6)

Solutions for K+(u) are given by [29]

K+(u) = K−(−u− ρ)tM . (6.7)

Note that the number of one parameter diagonal solutions is the same as for the super-

symmetric t–J model [10] and is equal to the rank of the underlying algebra.

6.2 Open chain transfer matrix and exactly solvable hamiltonian

Using the Reflection Equations (6.1), (6.2), and the Yang–Baxter algebra (4.4), one can

prove that the double-row transfer matrices t(u) [22]

t(u) = ζ(u)−LtrK+(u)T (u)K−(u)T (−u)−1 (6.8)

= tr0K
+
0 (u)ŘL0(u)ŘL−1,L(u) · · · Ř23(u)Ř12(u)×

× K−1 (u)Ř12(u) · · · Ř23(u) · · · ŘL−1,L(u)ŘL0(u) (6.9)

commute for different values of u [27, 28, 29, 31].

We then compute

dt(u)

du

∣∣∣∣
u=0

−
d

du
tr0K

+
0 (u)

∣∣∣∣
u=0

=

=
(
tr0K

+
0 (0)

)(
2
L−1∑
j=1

Hj,j+1 +
d

du
K−1 (u)

∣∣∣∣
u=0

)
+ 2tr0K

+
0 (0)HL0 . (6.10)

It is standard to use this expression, divided by tr0K
+
0 (0), to get a spin chain hamiltonian

with nearest neighbour interaction. By construction, this hamiltonian commutes with t(u)

for all values of u and it is hence exactly solvable [27].
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This operation however provides nothing here, since, for all the diagonal solutions

for K+, we have tr0K
+
0 (0) = 0. This phenomenon was noticed in [31], and explained

by the use of typical representations, which implies trM = 0 (actually StrM = 0 if no

bosonisation is performed). A method was found there to prove that, in the case

K−(u) = 1 and K+(u) = M , (6.11)

the quantum chain hamiltonian
L−1∑
j=1

Hj,j+1 (6.12)

still commuted with t(u) for all values of u. The Uq(sl(2|1)) symmetry is built-in in

this case, since the expression of the hamiltonian (6.12) contains only the coproduct of

some Casimir operators (See equations (4.20), (3.7), (3.8) and (3.3) which provide the

expression ofHi,i+1 in terms of some (ρ⊗ρ)∆(Cp)). This hamiltonian is then both exactly

solvable and quantum group invariant.

An other way to obtain an hamiltonian with local interaction in the cases when

tr0K
+
0 (0) = 0 is to take the second derivative of t(u) at u = 0. This method was also used

in [32], where the vanishing of the factor was due to the fact that q was such that q4 = 1.

It applies also with the solutions for K+ different from M and given by (6.7) and (6.5)

or (6.6).

d2t(u)

du2

∣∣∣∣
u=0

=

(
2
d

du
tr0K

+
0 (u)

∣∣∣∣
u=0

+ 4tr0

(
K+

0 (0)HL0

))(
2

L−1∑
j=1

Hj,j+1 +
d

du
K−1 (u)

∣∣∣∣
u=0

)
+A1 + A2 + A3 + A4 , (6.13)

where

A1 =
d2

du2
tr0K

+
0 (u)

∣∣∣∣
u=0

, (6.14)

A2 = 4tr0

(
d

du
K+

0 (u)

∣∣∣∣
u=0

HL0

)
, (6.15)

A3 = 2tr0K
+
0 (0)

d2

du2
ŘL0(u)

∣∣∣∣
u=0

, (6.16)

A4 = 2tr0

(
K+

0 (0)HL0HL0

)
. (6.17)

Now the factor
(
2 d
du

tr0K
+
0 (u)

∣∣
u=0

+4tr0

(
K+

0 (0)HL0

))
= 2 d

du
tr0K

+
0 (u)Ř2

L0

∣∣
u=0

in front

of the hamiltonian of interest can be chosen to be non-zero. Moreover, it is proportional

to the identity, so that we can use(
4
d

du
tr0K

+
0 (u)Ř2

L0

∣∣∣∣
u=0

)−1
d2t(u)

du2

∣∣∣∣
u=0

(6.18)

as a spin chain hamiltonian with nearest neighbour interaction.

The term d
du
K−1 (u)

∣∣
u=0

contributes to a boundary term on site 1.
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The term A1 obviously contributes only as constant. The terms A2, A3 and A4

contribute to boundary terms on the last site L of the chain. Note that the sum

A1 + A2 + A3 + A4 is equal to

A1 + A2 + A3 + A4 =
d2

du2
tr0K

+
0 (u)Ř2

L0

∣∣∣∣
u=0

. (6.19)

The expression of the exactly solvable hamiltonian with open boundary condition is

then

Hopen =

L−1∑
j=1

Hj,j+1 +
1

2

d

du
K−1 (u)

∣∣∣∣
u=0

+

d2

du2 tr0K
+
0 (u)Ř2

L0

∣∣∣
u=0

4 d
du

tr0K
+
0 (u)Ř2

L0

∣∣
u=0

. (6.20)

From the expressions of the boundary terms in (6.20), one can prove that, if the solution

of the reflections equations are multiplied by arbitrary functions of u, the hamiltonian is

left unchanged (up to constant terms).

6.3 Integrable boundary terms

We use the construction of section 5 for the expression of the bulk term Hj,j+1 = Hdist
j,j+1

of Eq. (5.6), (5.7) and (5.8). We then include the results of section 6 for the boundary

terms (inserting the Ř matrix of section 4). We get

Hdist
open =

L−1∑
j=1

Hdist
j,j+1 + B1 + BL . (6.21)

The boundary term B1 = d
du
K−1 (u)

∣∣
u=0

on site 1 takes one of the forms

B0
1 = 0 (in the case K− = 1) (6.22)

or

Ba1 =
−1

(1 + C−)(1 + q2C−)
×

×
{

(2 + C− + q2C−)E11 + (1 + C−) (E22 + E33)
}

(6.23)

or

Bb1 =
−1

(1 + C−)
(E11 + E22) , (6.24)

(mutually exclusive) depending on the choice of the solution (K−a or K−b ) for the matrix

K−. It depends on the parameter C− ≡ C from (6.5) or (6.6).

These expressions read, in terms of number of particles

B0
1 = 0 , (6.25)

Ba1 =
−1

(1 + C−)(1 + q2C−)

{
(q2 − 1)C−n↑1n↓1 + (1 + C−) (n↑1 + n↓1)

}
, (6.26)

Bb1 =
−1

(1 + C−)
n↓1 . (6.27)
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The boundary term BL =

d2

du2
tr0K

+
0 (u)Ř2

L0

∣∣∣∣
u=0

4
d

du
tr0K

+
0 (u)Ř2

L0

∣∣∣∣
u=0

on site L takes one of the forms

B0
L = 0 (in the case K+ = M) (6.28)

or

BaL =
1

(1 + q−1λ−2C+)(1 + qλ−2C+)
×

×
{

(2 + q−1λ−2C+q
−1λ−2C+)E11 + (1 + qλ−2C+) (E22 + E33)

}
(6.29)

or

BbL =
1

(1 + q−1λ−2C+)
(E11 + E22) , (6.30)

depending on the choice of solution for the matrix K+ (which is independent of the choice

for K−). It depends on a parameter C+ coming from (6.5) or (6.6) when used as solutions

for K+ given by (6.7).

These expressions read, in terms of number of particles and after a redefinition of the

parameter C+ that eliminates the dependence in λ,

B0
L = 0 , (6.31)

BaL =
1

(1 + C ′+)(1 + q2C ′+)

{
(1− q2)C ′+n↑Ln↓L + (1 + q2C ′+) (n↑L + n↓L)

}
, (6.32)

BbL =
1

(1 + C ′+)
n↓L . (6.33)

As we will see in the next section, there exists a non trivial choice for the boundary

terms Bb1 and BbL that leads to an exactly solvable hamiltonian with Uq(sl(2|1)) invariance.

7 Another spin chain hamiltonian: using the fermionic basis of

Uq(sl(2|1))

Alternatively, we could have used form the beginning the fermionic basis to describe the

quantum algebra. In this basis, the Cartan matrix is

(aij)ferm =

(
0 −1

−1 0
.

)
(7.1)

The generatorsK1, K2, E1, E2, F1, F2 in the fermionic basis are, in terms of the generators

in the distinguished basis:

K1 = k−1
1 k−1

2 K2 = k2

E1 = e3 E2 = f2k
−1
2

F1 = −f3 F2 = k2e2 . (7.2)
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As algebras, Uq(sl(2|1)) in both bases are identical. Only the choices of simple root are

different. However, the Hopf structure are not identical: the coproduct in the fermionic

basis is given by

∆̃(Ki) = Ki ⊗Ki ,

∆̃(Ei) = Ei ⊗ 1 +Ki ⊗ Ei ,

∆̃(Fi) = Fi ⊗K
−1
i + 1⊗ Fi , (7.3)

which, in terms of the distinguished generators, is different from (2.4) (See [8]), and

will produce (using the same algorithm as for the distinguished case) a quantum chain

hamiltonian different from (5.6):

Hferm = Hhop +Hferm
diag (7.4)

with

Hferm
diag = n↑in↓i + n↑i+1n↓i+1 − [2µ+ 1]

+ qµ+1[µ](n↑i + n↓i+1) + q−µ−1[µ](n↑i+1 + n↓i) . (7.5)

The hamiltonians obtained with the distinguished basis and with the fermionic basis are

actually very close to each other: the only difference is in boundary terms, which are

symmetric in ↑ and ↓ in the distinguished case, but not in the fermionic one. When

summed over the chain, the difference of the hamiltonians Hferm
open and Hdist

open (without

integrable boundary terms added) is indeed

Hferm
open −H

dist
open =

L−1∑
j=1

(
Hferm
diag j,j+1 −H

dist
diag j,j+1

)
=

x

q − q−1
(n↓L − n↓1) . (7.6)

The hamiltonian Hferm
open is actually equal to the hamiltonian (6.21) obtained with the

distinguished basis, now including the integrable boundary terms Bb1 (6.27) and BbL (6.33)

coming from the second solution (6.6) of the reflection equations (6.1), (6.2), for the

particular choice of parameters

C− =
q − q−1

x
− 1 C+ = qλ2C ′+ = qλ2

(
q − q−1

x
− 1

)
. (7.7)

Although different, the two Hopf structures defined by (2.4) and (7.3) are equivalent

[33] through a Reshetikhin twist [34]

∆̃(a) = F∆(a)F−1 , (7.8)

satisfying

(ε⊗ 1)F = (1⊗ ε)F = 1 , (7.9)

(F ⊗ 1)(∆⊗ 1)F = (1⊗F)(1⊗∆)F . (7.10)
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It was indeed proved in [33] that an operator F satisfying (7.8) could be obtained as

the factor of the universal R-matrix of Uq(sl(2|1)) related with the fermionic root which

defines the super-Weyl reflection that relates the two bases.

This implies that open quantum chains built with the two-site hamiltonians (5.6) and

(7.4) are equivalent, the equivalence matrix being given by(
ρ⊗ · · · ⊗ ρ

)
F (L) , (7.11)

F (L) being defined recursively as

F (L) ≡ (F ⊗ 1⊗
L−1

)(∆⊗ 1⊗
L−1

)F (L−1) . (7.12)

As in [8], this equivalence is simple for the two site hamiltonians (i.e. for (5.6) and

(7.4) themselves). However, it becomes highly non trivial for longer chains, the reason

being that the equivalence produced by the twist is non local.

In [35], Reshetikhin twists are applied to the supersymmetric t–J model and to the

supersymmetric Hubbard model with pair hopping (5.6). This leads to multiparametric

hamiltonians. The effects of these twists are visible in the bulk term of the hamiltonian,

in contrast with the action of our twist which relates the distinguished construction to

the fermionic one, and which affects only boundary terms.

8 Another example

We can also obtain Uq(sl(2))⊗ U(1) invariant Hamitonians as

H =

L−1∑
i=1

1⊗ · · · ⊗ (ρ⊗ ρ)∆(Pol{Q(+)
p ,Q(−)

p })︸ ︷︷ ︸
sites i,i+1

⊗ · · · ⊗ 1 . (8.1)

Choosing the four dimensional representation with the fixed parameter λ = q−1/2, and

taking a polynomial in Q(+) only, we get for instance

HTL
i,i+1 = c†↑i+1c

†
↓i+1c↓ic↑i + c†↑ic

†
↓ic↓i+1c↑i+1 − S

+
i S
−
i+1 − S

−
i S

+
i+1

+
(
c†↑i+1c↑i − c

†
↑ic↑i+1

)
ω
{
q−1n↓i + qn↓i+1 − (q + q−1)n↓in↓i+1

}
+
(
−c†↓i+1c↓i + c†↓ic↓i+1

)
{n↑i + n↑i+1 − 2n↑in↑i+1}

+ (n↑i − n↑i+1)
{
q−1n↓i − qn↓i+1 − (q − q−1)n↓in↓i+1

}
, (8.2)

which satisfies the Temperley–Lieb algebra

b2
i = 0 (8.3)

bibi±1bi = bi (8.4)

bibj = bjbi for |i− j| ≥ 2 . (8.5)
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Such hamiltonians were found in [36, 19]. It was noticed that, although not hermitian,

they lead to hermitian hamiltonian when multiplied by (1 − 2n↓i − 2n↑i + 4n↑in↓i) (the

parity operator on one site), the result satisfying also a Temperley–Lieb algebra (with

non vanishing square).

It could also be of interest to investigate the use of the hamiltonian (8.2) itself for

reaction-diffusion processes [37].
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A Appendix: scasimirs of U(sl(2|1))

We give in this appendix the expressions of the scasimirs of non-deformed superalgebra

U(sl(2|1)).

The scasimir of osp(2|1) appeared in [38, 39, 40]. In [40], the expression of the scasimir

is also given in the q-deformed case.

The proof of existence of scasimir operators for osp(1|2n) was given in [41, 42], where

it was also proved that the scasimir was the square root of a Casimir element of degree

2n. An explicit expression of the scasimir is written in [42].

The existence of scasimir operators in the case of sl(m|n) is known to Musson [43].

The classical superalgebra sl(2|1) is defined by the relations

[h1, h2] = 0 ,

[hi, ej] = ajiej , [hi, fj] = −ajifj ,

[e1, f1] = h1 , [e2, f2]+ = h2 ,

[e1, f2] = [e2, f1] = 0 ,

[e2, e2]+ = [f2, f2]+ = 0 ,

[e1, e3] = [f1, f3] = 0 , (A.1)

where

e3 = [e1, e2] and f3 = [f2, f1] . (A.2)

The last relations in (A.1) may also be written as Serre relations

e2
1e2 − 2e1e2e1 + e2e

2
1 = 0 ,

f 2
1 f2 − 2f1f2f1 + f2f

2
1 = 0 . (A.3)

18



J
H
E
P
1
2
(
1
9
9
7
)
0
0
6

We define the elements Q(±)
p of the non-quantum U(sl(2|1)) as

Q(+)
p =

{
h2(h1 + h2 + 1)− f1e1 − f2e2(h1 + h2 + 1)− f3e3(h2 − 1)

+ f1f2e3 + f3e2e1 + f2f3e3e2

}
(−h1 − 2h2 − 1)p−2

+ f2f3e3e2(−h1 − 2h2 + 1)p−2 (A.4)

and

Q(−)
p =

{
f2e2(h1 + h2) + f3e3(h2 − 2)

− f1f2e3 − f3e2e1 − 2f2f3e3e2

}
(−h1 − 2h2)

p−2 , (A.5)

for p ≥ 2. Their sum Cp and difference Sp are, respectively, Casimir operators and

scasimirs of U(sl(2|1)), i.e. they satisfy the classical analogues of (2.14, 2.15). The

relations (2.8, 2.9, 2.10,2.16, 2.17, 2.18) are still valid as long as the indices pi are greater

or equal to 2. Notice that the classical operators Q(±)
p , Cp and Sp are not the limits as q

goes to 1 of the corresponding quantum ones, but rather limits of some linear combinations

of them (See [8]).

Discussions with M. Bauer and V. Lafforgue led to an expression of S2 in terms of

antisymmetrized products of fermionic operators ei, fi, i = 2, 3 only, as for osp(1|2n) in

[42]. This seems to be possible for more general superalgebras.
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